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SUMMARY

As an alternative to classical linear feedback analysis, we present a nonlinear approach for the determination
of the sensitivities of a dynamical system from observations of its variations. The new methodology consists of
statistical estimates of all the pair-wise relationships among the system state variables based on a neural-network
modelling of the system dynamics (its time evolution). The model can then be used to estimate the instantaneous,
multivariate, nonlinear sensitivities. Classical feedback analysis is re-examined in terms of these sensitivities,
which are shown to be more fundamental in the analysis of feedback processes than estimates of feedback factors
and to provide a more appropriate representation of the system’s behaviour. The method is described and tested
on synthetic observations of the time variations of the Lorenz low-order atmospheric model where the correct
sensitivities can be evaluated analytically.
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1. INTRODUCTION

Feedback processes are present in dynamical systems that, like the climate, involve
nonlinear relationships among many variables integrated over time. A feedback process
(or loop) involves at least two coupled variables where an initial perturbation of one
causes a change of the other that causes further perturbation of the first. A formalism
from electrical circuit theory (Bode 1945) has long been used to study feedback
processes in climate (cf. Peixoto and Oort 1992; Curry and Webster 1999), especially
in models used to predict climate change (e.g. Hansen et al. 1984; Schlesinger 1985).
This approach combines the sensitivities of the system (first derivatives of one variable
by another) to characterize changes in the equilibrium state of the system produced
by an external forcing. Such an approach is valid in a theoretical model where the
instantaneous sensitivities can be evaluated directly from the continuous equations of the
system; however, its application is more questionable in situations where the underlying
equations are unknown (or only partially known) and all we have are observations of the
system behaviour in the form of discrete measurements of the system state at different
times. This is the situation faced in the study of the real climate, but also encountered in
the study of climate models which are numerically discrete approximations of the real
system.

The sensitivities of climate models have been estimated in several ways. One
approach is to introduce a perturbation of one variable at a time and then evaluate
the changes of all the other variables. The problems associated with this approach are
numerous. First, since the initial perturbation is limited to one variable only, the in-
terdependence of the sensitivities is completely neglected. Even if many variables are
perturbed together, it is difficult to be sure that the estimate of the multivariate sensi-
tivities is complete. Second, in most cases the sensitivities are estimated from the finite
differences between two (usually equilibrium) states of the system, either as differences
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with geographical location or time, depending on the strategy adopted (Slingo et al.
2000). Usually, this procedure also involves averaging the variables over large space and
time domains, which suppresses all the possible non-local relationships. Third, in taking
such differences over finite (large) space or time intervals, the individual relationships of
pairs of variables are already ‘contaminated’ by actions of the feedback processes. For
example, one feedback process can reduce the importance of another feedback process,
leading to an underestimate of the latter by comparing differences over a finite time
interval. This point is equivalent to saying that, as the differencing interval increases,
the higher-order relationships (higher-order derivatives at least) become important. In
this sense, the usual method for estimating the system sensitivities ignores these higher-
order terms, which is equivalent to linearizing the system behaviour. As we will see, this
simplistic approach can be highly misleading because the space-averaged and/or time-
averaged sensitivities may not represent the system dynamics correctly. However, this
classical feedback analysis can still be useful if one is interested in the equilibrium (or
transient) response of one variable to a pertubation of one other, especially when one is
comparing two nonlinear integrations.

The analyses described above can only be performed on models, usually not on
observations of a real system. In the study of the climate, we cannot conduct controlled
perturbation experiments or observe changes of the equilibrium state (although paleo-
climate comparisons are assumed to represent changes of equilibrium); we have only the
transient variations of the system, some induced by temporary perturbations (e.g. vol-
canic eruptions), some unforced variations, to work with. Hence the classical feedback
analysis approach is not very helpful in understanding climate feedback processes from
observations nor in verifying how well our climate models represent them because the
hypotheses underlying the classical feedback analysis are too crude (as we will discuss
in more detail): a mono-variable conception of forcing and response, a linear model,
constant and mutually independent sensitivities. Thus, it seems questionable that a few
(constant) feedback factors can be used to explain the time integral of the nonlinear,
multivariate climate processes well enough to predict accurately the climate response to
an external forcing as a change in the equilibrium state. Even if this were possible, such
an approach would not describe the transient adjustment period between the beginning
of the changed forcing and the attainment of new equilibrium, including its duration.

To avoid these problems we propose an alternative approach that takes the sensi-
tivities themselves as the fundamental quantities defining the dynamical behaviour of a
nonlinear system, rather than their combination into constant feedback factors. Our goal
is not to develop a statistical method for climate prediction; the use of the sensitivities
for this purpose is questionable because of the chaotic behaviour of the system. Instead,
we believe that accurate estimates of the instantaneous, multivariate and state-dependent
sensitivities can provide a more appropriate and better understanding of nonlinear cli-
mate feedback processes and a much better way to compare climate models with each
other and with observations. If a model does not possess the same time/space-localized,
multivariate and nonlinear sensitivities as those inferred from observations, the feedback
processes of the model must be wrong. Stability analyses of the dynamical processes
involved can also be performed using these sensitivities and, for prediction purposes,
the temporal propagation of errors onto the state of the system can also be analysed
(Smith 1997).

To characterize the full nonlinearity of the feedback processes, we will show that
it is necessary to estimate the system sensitivities at space- and time-scales sufficiently
small that they can be treated as constant and that the higher-order relationships can
be neglected. This approach provides a more natural way to understand the physical
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processes, their causal relationships, how they evolve during a transient climate change,
and how they integrate over time to determine the change in the equilibrium climate
state. Moreover, this approach suggests some ways to evaluate the completeness of the
description of the climate system, either observations of it or a model of it, in terms
of the list of variables, their resolutions and coverage needed to describe the system
dynamics accurately. Understanding of the feedback mechanisms is a prerequisite to
predicting them with useful skill, so carrying out an analysis along these lines can lead
to improved numerical models that are a much more credible way to perform climate
predictions.

In section 2, we first refine the terminology required to perform a feedback analysis
with an emphasis on the discrete formulation of dynamical systems, which is better
adapted to prediction, to the description of the cause-and-effect relations underlying
the feedback processes, and to the direct analysis of observations. Then we develop
a more general analysis of feedbacks, showing that the sensitivities are sufficient to
define the interdependencies of one variable on another that cause the feedback loops
in a nonlinear dynamical system. Finally, we compare this analysis with the classical
linear feedback analysis to illustrate the limitations of feedback factors as descriptors of
nonlinear dynamics. In section 3 we describe a general, multivariate, nonlinear statistical
method to estimate the sensitivities of a dynamical system. As a test of the validity of
this analysis approach, we need a dynamical system with known analytic equations that
are simple enough to illustrate the workings of our analysis method and that allow for
a direct evaluation of the sensitivities for comparison with the results of our analysis.
We also need a system that has more than one variable and is sufficiently nonlinear in
character to be a real challenge to the analysis, not just a trivial exercise. In section 4 we
present a discrete version of the Lorenz low-order dynamical model, which meets all our
requirements, and, though very simple, is also thought to possess some characteristics
similar to the real climate. We also show the analytic expressions for this model that
appear in the general feedback analysis and apply the classical feedback analysis to
show the limitations of feedback factors for describing the system dynamics. Then in
section 5, we apply our analysis method to the time-evolving output (observations) of the
Lorenz model and evaluate the accuracy of the sensitivities determined by our statistical
analysis method compared with the exact analytic expressions. This comparison shows
how the instantaneous, multivariate, nonlinear sensitivities can accurately represent the
system dynamics. Section 6 has some concluding remarks.

2. FEEDBACKS IN A DYNAMICAL SYSTEM

There are two general ways of formulating a dynamical system: the continuous
and the discrete approaches. We prefer the discrete formulation because it is simpler to
describe the cause-and-effect relationships between variables. Furthermore, the discrete
approach is more practical for prediction when no theoretical physical evolution model
is available. We adopt the discrete formalism in the following, but will refer sometimes
to the continuous case. The goal of this section is to show how time integration of
dynamical relationships leads to feedback processes and to highlight the role played
by the sensitivities.

(@) Dynamical systems

The object of this study is the analysis of a physical dynamical system by observing
the time variations of the quantities defining the state of the system. A dynamical system
is often described by a set of ordinary differential equations (ODEs) which come from
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the physics of the problem. For practical considerations or because these ODEs are not
known, the dynamical system is often discretized in the form:

X + A1) = APQ)) + €(1), 1)

where X(7) is the p-dimensional vector of observable variables (defining the state of
the system) at time ¢, P(¢) is the d-dimensional vector of variables defining the system
behaviour (predictors), which can include X(¢), €(¢) is noise (observational or model
errors), and o+ is a mapping, possibly nonlinear. This kind of model is often used in
atmospheric and oceanic sciences to perform, for example, climatological predictions.

Determination of the good predictors, P(?), is the crucial issue for the quality of the
model. This determination uses all the a priori physical knowledge about the system.
If P(r) =X(z), the system is said to be autoregressive. Sometimes, the prediction of
X(t + At) requires the knowledge of

X(@), X(t — At), ..., X( — qgAr)

because the system dynamics has inertia that requires the knowledge of previous steps.
Then, the system is said to be autoregressive with memory ¢, denoted as an AR(q)
model. However, defining a new state variable

X'(t) = (X(@), X(t — A1), ..., X(t — gAD)),

one can rewrite this AR(q) system as an AR(1) model with memory 1. Since we are
interested in using this model to retrieve sensitivities from two consecutive time steps,
we will use, in the following, only a memoryless model (i.e. ¢ = 1), which is consistent
with the physics in general-circulation model numerical simulations.

If the dynamical system Eq. (1) is linearized near P(#p), we obtain

X(1 + At) — X(10) = G(P(1)) AP(19) + €(10), 2)
where 0X(to + A1)
_ 0
GP(1)) = TPy 3)

is the Jacobian or sensitivity matrix of the mapping + at state P(#p).

The uncertainty &(¢) is often neglected, so the discretized system of Eq. (2) is
entirely defined by the sensitivities G(P(¢)) of the dynamical system and by an initial
state P(1p).

(b) General feedback analysis: time integration of sensitivities

For simplicity of notation, we suppose, as is true in most cases, that the system
is autoregressive, i.e. the predictors are equal to the state variables (the response),
P(t) =X(@).

In the simplest system, where the local mapping +4 of Eq. (1) is linear, we have
X(t + At) = AX(¢), where the matrix A is diagonal and independent of time. The
variables of the system are independent and evolve independently as

X, (tg + kA1) = (A;)* X (to).

The absolute value |A;;| implies decreasing X; if |A;;| < 1 or increasing X; if |A;;| > 1.

However, if the matrix A is non-diagonal,i.e. some of the variables of the system are
dependent on other variables, an initial perturbation of one variable will propagate into
all the other variables that are directly or indirectly dependent on this initially perturbed
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variable. After k time steps, the state of the system is given by
X(to + kA1) = A*X(19).

So, the responses X(¢), at any time ¢, are still a linear combination of the predictors
at time f#q, but the impact of an initial perturbation has been mixed up into each linked
variable because of the feedback loops. For the system to be stable, it is required that
the eigenvalues of the matrix A* be less than one, otherwise the system is unstable.

If the mapping + of Eq. (1) is nonlinear, the Jacobians are dependent on the state
X(?). So, even if we linearize the mapping A using its Jacobians, G(X(¢)), after k time
steps, the state of the system is given by

k
X(tg + kA1) = { [Texa+ 1Ar>>}X(zo>,
=1

which is more complex ([ [ is the product symbol). This Jacobian-product-based propa-
gator is necessary also for linear but non-autonomous (unforced) mappings.

To define a feedback process in the discrete formulation of a dynamical system,
we need at least two time steps to describe the feedback loops involved. If an initial
perturbation AX(7p) is introduced into the system at time fg, the response of the system
at time #y + At is approximated to first order by

AX(tg + At) =~ G(1g, 1o + A) AX(7), “)

where G(%g, t9 + At), the gain of the system from 7y to g + At, is the Jacobian matrix
G(X(?)) of the mapping + between [fy, o + At]: matrix G(fg, fo + At) has elements

doh (1o + A1) 0X;(tg + At)
IXj(t)  0X;(10)

at coordinates (i, j). An initial perturbation AX ;(Zp), on variable X ; at time {o, is then
propagated at time fy + A7 to each variable X; that is linked to X; via off-diagonal
terms in G(#p, fp + At). But the resulting perturbations AX; (fg + At) are just the direct
impact of the initial perturbation, so there is no feedback during [7g, o + At].

Attime t = tg + 2At, the impact on the system is given to first order by

AX(tg + 2A1) ~ Gty + At, 1y + 2A1)AX(tg + At), (5)
~ G(tyg + At, 1y + 2A1)G(1g, to + At) AX(1p), (6)
~ G(to, tg + 2A1) AX(1p). (7)

The previously propagated perturbations AX; (79 + Af) resulting from AX;(f)) can
then perturb AX (¢ + 2Ar), completing a feedback loop. The initial perturbation
AX (), can be amplified or damped to A X ; (o + 2At). We see in this simple example
that feedback processes result from the time integration of the variable dependencies of
the system. The term G(tg, fo + 2At), representing the evolution of the system in two
time steps, includes these feedback loops.

(¢) Forcing/response

We introduce in this section the concept of external forcing to formalize the
perturbations of the variables of the system we have discussed in the previous example.
It is important to note that the feedback processes are present and active in a dynamical
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system, even when no external forcing is applied and the system is in equilibrium
(forcing and feedback are often confused).

An external forcing perturbs some internal variables of the system (i.e. variables
that define the state of the system). The external forcing has an impact on the internal
variables, but the reverse is not true: the forcing is independent of the internal variables.
There are many ways an external forcing could operate. The simplest case is the
introduction of an impulse perturbation at time fg: E(t) = Eqd(¢9 — 1), a time-localized
volcanic eruption for example. In this case, the initial perturbation will be propagated
in time through the internal variables, following their interdependencies. This is the
example discussed in the previous section.

The external forcing can also begin at time #y and remain constant in time:

E(t) =Eg, t € [ty, to + At, ... ].
In this case, the relations Eqs. (5)—(6) become more complex:
0X(t) + 2At)

AX(t 2A1) ~ E(t 2At —E( At
(to + ) (to + )+8X(t0+At) (to + A1)

0X(tg + 2At) 0X(2g + At)
0X(to + A1) aX(1g)

~Ey + Gty + At, tg + 2ADEy + G(tg, tg + 2A1E;. &)

®)

E(1),

If the gains of the system are constant, G (i.e. a linear dynamical system), then at
time t 4+ kAt
| Gk-‘rl
AX(tg + kA =T+ G+ G*+ - -+ GHEy = ¢ Fo (10)
where I is the identity matrix. If the eigenvalues of matrix G have an absolute value
lower than 1 (otherwise the system is unstable), the effect of the external forcing is
stabilized, the dynamical system eventually reaches a stabilized state:

AX(fg + kAt) ~

I—GEO’ for k — 400 (11)

’ZE()-l- Eo. (12)

I-G
For example, a mono-variable system with G = 1/2, Eq = 1 and X (#p) = O stabilizes at

lim X (¢ + kAt) =2;
k—+o00
the forcing has changed the equilibrium state of the system. Figure 1 shows the values
of the stabilized solutions of this simple system for different valuesof G. If -1 < G < 1
then the system stabilizes. If G is close to 0, the system stabilizes near Eq. The closer
the gain of the system G to 1™ (i.e. lower but close to 1), the higher is the value at which
it stabilizes. If the absolute value of G is bigger than 1, the system is unstable.

(d) The classical analysis of a parallel feedback configuration

The previous examples are very general since each variable of the system can be
dependent on any other variables. But in some cases knowledge of cause-and-effect
relationships provides a priori information about the ordering and the structure of the
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Figure 1. The stabilized values limi— 400 X (fo + kAt) of a mono-variable linear system for different values of
the gain of the system, G, with external forcing Eo = 1. See text for explanation.
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Figure 2. Feedback-loops system in parallel: E. is the external forcing in variable X., G is the linear gain of
the system, Xgq is the ‘diagnose’ variable where the impact of the forcing is observed, and the coefficients H;
represent the feedbacks.

dependencies. It is then possible, and recommended, to use this information. This kind
of a priori information is used, for example, in the cause-and-effect analysis technique
(Andronovaand Schlesinger 1991; Andronovaand Schlesinger 1992).

In the classical feedback analysis (e.g. Hansen 1984; Schlesinger 1985), it is
supposed that the external forcings Ey, of the system act on only one variable X, of
the system, that all the other internal variables {X; = X;(X4)} are all dependent only
on one particular internal variable X4 (i.e. the diagnosed variable), that the impact
of the external forcings is observed on this particular internal variable X4 (i.e. Xq is
a function of X.), and that the feedbacks act in parallel (Fig. 2). These assumptions
are very strong cause-and-effect constraints: the diagnosed variable X is supposed to
be more important than the other internal variables {X;}; by hypothesis the {X;} are
dependent only on X4, and they are not directly dependent on the external forcing or
each other. In this case, the feedback processes are assumed to act in parallel, i.e. they
do not interact with each other.
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Since the external forcing Ey, acts on only one variable, X., of the system, the
general multivariate expression in Eq. (8) becomes a scalar relation:

0Xc(tg + 2A1)
A X (¢ 2At) >~ Ey (1 2At — — AX;(t At
e(to + ) x.(fo + )+Xi: X (o 7 AD i(to + Ar)
0X.(tg + 2A1) 0X;(tg + At)
+ZZ e(fo i (to
TG X (to + A1) 3X;(to)

(13)

A X (to).

We measure the effect of the constant external forcing Ex, on X4, the diagnosed variable
(Fig. 2). We then analyse the system AX. —> A Xj4. So the perturbations AX; (g + At)
and AX;(tp) are considered only for the diagnosed variable Xg4. In other words, the
impact of the perturbations on variables other than X4 are not taken into account in this
classical analysis (see Fig. 2). Thus, Eq. (13) becomes

0Xc(tg + 2A1)

A X (¢ 2At) >~ Ey ( 2At — A X4(1, At
e(to + ) x.(fo + )+ 3Xalo L A1) a(to + At)

dXo(to + 2A1) 3X; A (14)
Z (to + 2At) (to + A1) AX4(t0).
0X;(to+ At)  0Xq4(t0)

Because of the hierarchical cause-and-effect dependencies adopted, i.e.
Xe(t0) = Xa(to + A1) — X;(fo + 2A1)
(see Fig. 2), some of the partial derivatives in Eq. (14) are zero:
0Xc(tg +2A1)  0Xe(fg + 2A1)
0Xalto+ A~ 0Xe(tg+ AN
and Eq. (14) simplifies to

15)

0Xc(to + 2A1) 0X;(tg + At)
AXe(tg + 2A1) = Ex (tg + 2A1) + AXq4(t9)
o0 20 7&;# X0+ A 0Xalg) 0O

external forcing

~

feedback terms
(16)
~ Ex (to+2A0) + Y Hilto. to + 20 AX4(19), (17)
id iste
where the terms H;(fg, fo + 2At) are the products of first derivatives describing the

cause-and-effect relations. Expression (17) can be multiplied by the gain G(#g + 2At¢,
o + 3At) of the system AX.(tg + 2At) — AXq(tp + 3A1):

AX4(to + 3A1) =~ Gty + 2At, tg + 3ADA X (tg + 2A1)
~ Gty + 2At, 1y + 3A1)Ex_(fg + 2A1)

+ G(ty + 2At, tg + 3A1) Z H;(ty, to + 2A1) A X4(tp).
idiste ]
(18)
If the system is in equilibrium, or if At, the time discretization, is sufficiently small,
1e. AXy(tg + 3A1) >~ AX4(tpy),

(1 —Gltg +2At, 19 +3A1) > H(to, to + 2At)) AXq4(to + 3A1)
itd,ie
~ G(ty + 2At, 1o+ 3A1)Ex,_(fg + 2A1).

(19)
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So,

AX4(tg + 3A1)
G(t 2AtL, ¢ 3At
~ (o + 0+ 340 Ex, (1o +2A1)  (20)
1 — G(tg + 2At, tg + 3A1) Z#d,i#e H;(ty, to + 2A1)
G(tg + 2At, tg + 3A1)

1= isaize Jilto, 1o +3A0)

where the terms
fi(to, to + 3A1) = G(tg + 2At, tog + 3At) H (1, tog + 2At)
are called the feedback factors. The gain with feedbacks is then defined by
G(ty + 2At, 1o + 3At)

1= sa.ise Jiltos to +3A1)
The feedback f; factors are dependent on both the variable X, perturbed by the external
forcing and the diagnosed variable X4 chosen in the beginning of the analysis. These
feedback factors are time-dependent, but this expression is traditionally (Peixoto and
Oort 1992; Curry and Webster 1999) given without time reference. This means that it is
supposed that the system is in equilibrium or that the quantities are examined locally in
time.

The classical way to find this expression is much more simple and the hypotheses
that are made are not directly understood. The system is first formulated as a ‘mono-
variable’ forced dynamical system AX4(#9) — AXq4(fo + At). The total gain of this
system is defined as G H which represents the feedback loops plus the linear gain, where

_ 9Xaltg + A1)
© 9Xe(10)

is the gain without feedbacks of the system AX. — A X4, and

- Z 0Xc(tg +2A1) 0X;(tg + At)
B dX;(to + A1) 3Xq(to)

Ex (tg + 2At1), (210

G r(to + 2At, 19 + 3A1) = (22)

i#d,iste

represents the feedbacks. The forcing of the variable X4 is given by G E,. In the limit
of decreasing time steps, we could use Eq. (11) to obtain

G
 1-GH

This expression converges to the continuous case as At — 0. In the original field
where this formalism was developed, i.e. the analysis of electrical circuits (Bode 1945),
the relation Eq. (14) is instantaneous since the electricity propagates (almost) instantly.
In this continuous case, the time reference in Eq. (14) can be suppressed. The same
remark holds if the system is in equilibrium, i.e. if the previous perturbations are
constant in time. Thus, this analysis has to be done locally in time or at equilibrium.

The gain of the system, G y, is very sensitive to the estimation of the feedback
factors f;. Furthermore, it is very important to estimate all these factors simultaneously
since the effect of one particular feedback is sensitive to the presence or absence of other
feedbacks.

AXgq Ex.. (23)
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Figure 3. Analysis of the gain G ; of the system as a function of the unique feedback factor f; the gain without
feedback G =0.5.

Figure 3 shows the gain of a simple system, G ¢, as a function of the feedback factor
f, supposing that the gain of the system without feedback is G = 0.5. If f < 0, the gain
with feedback is reduced: 0 < Gy < G.If f = 0, the gain with feedback is unchanged:
Gr=G.If 0 < f < 1, the gain of the system with feedback is increased: G y > G, and
lim y_, | = 400 (the system becomes unstable). If f > 1, G y is negative, so the system
oscillates, and it is unstable if G y < —1. We see in Fig. 3 how the effect of a feedback
factor on the system can be highly nonlinear. So the significance of a feedback factor is
strongly dependent on the availability of the feedback factors of all variables: an isolated
feedback factor cannot characterize any relevant behaviour of the whole system.

(e) The classical example

The following example has been extensively used in the climate literature. We
suppose that the global-mean net radiative flux (solar minus terrestrial) at the top of
the atmosphere (TOA) is in equilibrium (A Froa = 0). The question is: if an external
forcing is introduced into the system, how will the system react? The global-mean
surface temperature 75 is taken as the diagnosed variable since a lot of other internal
variables of the system are (assumed to be) dependent on this variable. Then, we can
analyse the feedback process loops acting on 7 using the above formalism and assuming
that they all act in parallel.

A forcing Ex_, is introduced onto an external variable, X¢y (i.e. the solar insola-
tion, volcanic eruptions, etc.). We analyse the system:

Froa(t + At) = F(Xex (1), Xi (1), T5(1)). (24)

The terms X; are the internal variables of the system (i.e. that depend on the surface
temperature, X; = X; (Ty)) like the albedo, the water vapour, the lapse rate, the clouds,
etc.

We suppose here that it is possible to express the external forcing Ey_,,, in terms of
perturbations of the net radiative flux, E1oa. The forcing introduces perturbations onto
the variables of the system; the link between these perturbations can be expressed by
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Figure 4. Feedback-loops system in series: E. is the external forcing in variable Xe, G1 and G are the linear
gains of the systems X. — Xq; and Xq; — X, Xq2 is the ‘diagnose’ variable where the impact of the forcing is
observed, and the coefficients H; represent the feedbacks.

(see Eq. (16)):

0 Froa (to + 2At) 0X;(ty + A1)
AFroa(fy + 2At) = Etoa(fo + 2A1) + E AT(1p).
— & 3Xi(tp+ AD) 0T (o) ’

external forcing

feedback loops
(25)
If the equilibrium state is reached, or if the sensitivities are instantaneous, the
reference to time can be suppressed:

AFroa = Etoa + <Z Hi) AT;, (26)

i

where the terms H; are the products of first derivatives describing the cause-and-effect
relations in Eq. (25). By multiplying this expression by the gain of the system without
feedbacks, G = 075/0 Froa, we finally obtain the following familiar expression:

G G

ATy= ———~——EtoAn = — = E10A- 27
’ 1-G Zi H; 1 - Zi fi

(f) The classical analysis in a series feedback configuration

It is supposed again that the external forcing Eyx, of the system acts on only one
variable X, of the system. There are two diagnosed variables: X4; and X4z, Xq» being
dependent on Xg4;. Some of the internal variables {X;; = X;1(Xq1)} are dependent
on X41, and some others {X;» = X;»(Xq42)} are dependent on Xgp. The impact of
the external forcing is observed on the diagnosed variable X4, (Fig. 4). This internal
structure describes a dynamical system X, — X431 — Xg4o, with feedbacks in series. In
this case, the gain of the subsystems X, — Xq; and X4; — Xq» would be computed as
in section 2(d). Then the global gain of the system wouldbe G y = G 1, G ;.

(g) Comments on the classical feedback analysis

We have seen in the two previous subsections that where particular cause-and-effect
relations in the system are known (or assumed), the time reference is required in the
discrete case, but can be suppressed in two situations:
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(1) In an equilibrium state: the perturbations are constant 0.X/dt = 0 (not to be
confused with zero forcing), so they are the same at each time step. The feedback
analysis is then only a characterization of the equilibrium state. There is no estimation of
the time required to reach the equilibrium and we cannot predict the transient behaviour
of the system. Furthermore, we do not know a priori the sensitivities in the equilibrium
state, so we are required to assume (without evidence) that the sensitivities are constant
and that we have a good estimate of them. Finally, the system does not have to be in
static equilibrium; they may be unforced variations.

(i) When the sensitivities are instantaneous: the relations between the perturbations
of each variable of the system are then valid without a time reference. But in this case,
instantaneous estimates of the sensitivities are required and the feedback factors have
to be computed at each time because of their state dependence. To our knowledge, this
approach has not yet been investigated since no technique has been available to estimate
these instantaneous, multivariate and nonlinear sensitivities.

The classical approach to feedback analysis from the electrical circuits theory
(Bode 1945) was first used on simple energy-balance models of the climate where
instantaneous sensitivities are available because they can be evaluated directly from
the simple equations of these models. Even if the estimation of sensitivities was crude,
the applicability of the technique was justified when the cause-and-effect relationships
were supposed to be known. In more recent studies, and particularly in the analysis of
observations, this approach to the estimation of sensitivities is highly questionable. In
particular, the use of this characterization of the equilibrium state to predict the system
response to an external forcing is inappropriate since the sensitivities used to produce the
equilibrium state are unknown. Some of the limitations of actual studies are as follows:

(i) Model used. The hierarchical model of cause-and-effect relations, described by
greatly simplified relations among the sensitivities, is usually much too simple. For
example, the fact that the forcing/gain/response system has to be mono-variable is a
very strong simplification: such assumptions result in the suppression/neglect of some
perturbations and some first derivatives in the system. Moreover, it is usually assumed
that the feedbacks operate only in parallel, which is not general.

(i) Estimation of sensitivities. The sensitivities are often estimated by finite differ-
ences between two (usually equilibrium) states of the system. First, this approach mea-
sures only the coincidence of the changes in two quantities, but it does not mean that
there is a cause-and-effect relationship between these variables. The relationships might
also be indirect (via the ordering of the dependencies). Second, this approach measures
the changes in two quantities and the sensitivity is then estimated assuming that the other
variables do not interact. This is a strong limitation since there are a lot of cross-linkages
in the variables of the climate system. Third, the finite difference for the estimation of the
sensitivities can be highly misleading if the sensitivities of the system are not constant
in time.

(iii) Forcing process. The forcing model is often not expressed: is it localized in time,
constant, growing in time, cyclic, etc.? The way that the external forcing evolves in time
is also important for the study of the transient response.

(iv) Better description. Previous approaches to feedback analysis are often only a
characterization of the equilibrium state of the system after the introduction of an
external forcing. The transient period between the beginning of the forcing and the
equilibrium state is not described, the time to reach the equilibrium is not estimated.
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This is a real drawback for the understanding of these phenomena. Furthermore, the
gain of the system with feedback factors is highly dependent on the precision of the
sensitivity estimates.

In conclusion, the actual application of the classical feedback analysis is limited
by some very strong assumptions like linearity (i.e. sensitivities constant in time), static
equilibrium, mono-variable cause-and-effect relationships, etc., and so does not seem
at all appropriate for application to the climate system. Moreover, since the resulting
expressions for the feedback factors are products of the instantaneous sensitivities, it
would seem more straightforward to evaluate these sensitivities instead. To avoid the
classical limitations, the general feedback formulation should be used to evaluate the
nonlinear, multivariate and instantaneous sensitivities in both numerical models and
observations. We have developed a method to estimate these sensitivities from the time
evolution of the system state which we describe in the next section.

3. A NONLINEAR REGRESSION SCHEME FOR ESTIMATION OF SENSITIVITIES

To estimate the sensitivities of the dynamical model in Eq. (1), we use a multivariate
nonlinear regression fit to the statistics produced by observing the behaviour of the
system over a time period long enough to provide a good sample of the different states of
the system. Any multivariate nonlinear regression technique, such as spline interpolation
or ARMAX™* models, etc., could be used. For this purpose, we use a neural-network
(NN) technique because of its ability to process large-dimension datasets (which will
be helpful for further experiments on numerical models) and its capacity to integrate
a priori information about the problem (Aires 1999). This technique has been used
extensively to estimate physical relationships such as inverse radiative-transfer models
(see, for example, Aires et al. 2002b,c,d).

(@) The neural-network model

The Multi-Layer Perceptron (MLP) network is a mapping model composed of
parallel processors called ‘neurons’. These processors are organized in distinct layers:
the first layer (number 0) represents the input P = (p;; 0 <i < mg) with mg the number
of neurons in layer 0. The last layer (number L) represents the output mapping X =
(xg; 0 <k <mp). The intermediate layers (0 <m < L) are called the ‘hidden layers’.
These layers are connected via neuronal links (Fig. 5): two neurons, i and j, between
two consecutive layers have synaptic connections associated with a synaptic weight w;;.

Each neuron j executes two simple operations: first, it makes a weighted sum of its
inputs from the previous layer z;; this signal is called the activity of the neuron:

a; = Z WijZ- (28)
ielnputs(j)

Then, it transfers this signal to its output through a so-called ‘transfer function’, often a
sigmoid function such as o (a) = tanh(a). The output z; of neuron j in the hidden layer

is then given by
2j :U< Z wljZl)-

leInputs(j)

Generally, for regression problems, the neurons in the output (last) layer have a transfer
function of identity. For example, in a one-hidden-layer MLP (Fig. 5), the kth output x

* AutoRegressive Moving-Average with eXternal process.
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Figure 5. Architecture of a multi-layer perceptron neural network with L layers, with synaptic weights w;;,
inputs P and outputs X.

of the network is defined as

xp(y) = Z wjro(aj) = Z wjk0< Z wijpi)a (29)

JjEST JjEST i€Sy

where o is the sigmoid function, a; is the activity of neuron j, and §; is the ith layer of
the network (with i = O for the input layer). We have deliberately omitted the usual bias
term in this formula for clarity, but include it in the actual network.

The key to our analysis is that any continuous function can be represented by
a one-hidden-layer MLP with this kind of sigmoid transfer function (Hornik et al.
1989; Cybenko 1989). Hence the process of training the MLP to fit the observed
multivariate, nonlinear relationship statistics is equivalent to deriving a multivariate,
nonlinear function that behaves as the dynamical system in question. The key advantage
of the NN approach over some other methods is that the Jacobians (i.e. sensitivities) can
be evaluated directly from the MLP (see later).

(b) The learning algorithm

Given a neural architecture (number of layers, neurons and connections, type of
transfer functions), all the information of the network is contained in the set of synaptic
weights w;;. The learning algorithm is an optimization technique that estimates the
network parameters W = {w;;} by minimizing a loss function, C(W), required to fit the
desired function defined by observations as closely as possible. The criterion usually
used to adjust W is the mean-square error in network outputs:

mr
cCW)=14 / / (xe(P; W) — )2 H (tx/P) H (P) iy, dP, (30)
k=1

where #; is the kth desired output component, x; the kth neural output component,
H (#; /P) the probability function of output #; given the input P, and H (P) the probability
density function of input data P. If specific a priori information about the probability
distribution functions is available, quality criteria other than least-squares can be used.
For example, criteria involving higher-order statistics have been defined (Aires et al.
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2000). Practically, C(W) is approximated by the classical least-square criterion:

_ 1 &
COW)y= 2 D (@ W) — ). 31)
e=1

The error back-propagation algorithm (Rumelhart ez al. 1986) is used to minimize
C(W). It is a stochastic steepest descent (i.e. Newtonian minimization procedure) very
well adapted to the MLP hierarchical architecture because the computational cost is only
linearly related to the number of parameters.

(¢) The neural Jacobians

The important feature of the NN for our purpose is that the adjoint model of
the neuronal model is directly available (Aires 1999; Aires et al. 1999, 2001). The
computation of this adjoint model (or neural Jacobians) is accurate and very fast. Since
the NN is nonlinear, these Jacobians depend on the situation x. For example, the neural
Jacobians in the previous example of Eq. (29) (a MLP network with one hidden layer)

are
Bxk do
5 e (X w e

api JjEST ieSy

where do /da is the derivative of the transfer function o. For a more complex MLP
network with many hidden layers, there still exists a back-propagation algorithm for
efficiently computing these neural Jacobians.

The neural Jacobians concept is a very powerful tool because it allows for the direct
statistical evaluation of the multivariate and nonlinear sensitivities of the dynamical
system under study.

4. ANALYSIS OF THE DISCRETE LORENZ MODEL

To test the definitions and the technique previously presented, we apply it to a
simple nonlinear, multivariate, chaotic, non-stationary and forced dynamical model for
which the sensitivities are known analytically. We choose here a discrete form of the
low-order Lorenz model (Lorenz 1984). This model is very general since it is not
a mono-variable structure, as described in sections 2(d) and (f), and it exhibits very
complex behaviour. Nonetheless, we can define the time relationships directly from the
equations of the model to test our ability to infer these relationships from the observed
behaviour (model output). We have discretized the Lorenz continuous model to make it
easier to describe the cause-and-effect relations of the feedback processes.

(a) Continuous Lorenz model
The low-order model used in this study was developed by Lorenz (Lorenz 1984;

Lorenz 1990) to analyse the chaos and stability assumptions about the atmospheric
circulation. This simple model is able to represent the Hadley circulation and is used
to determine the stability or the instability of this circulation (stationary or migratory
disturbance). This model is defined by three ODEs:

dX(t)/dt = —=Y*(t) — Z%(t) — aX (t) + aF),

dY@®)/dt=X@®)Y(@) —bX()Z(t) — Y () + F?, (33)

dZ@)/dt =bX®)Y () + X (@) Z(t) — Z(1),

where



254 F. AIRES and W. B. ROSSOW

e 1 is the time (equivalent in units to about 1 day);

e X is the intensity of the symmetric, globe-encircling, westerly wind current and
also the poleward temperature gradient (assumed to be in equilibrium with it);

° Y is the cosine phase of a series of superposed large-scale eddies, which transport
heat poleward at a rate proportional to the square of their amplitudes;

° Z is the sine phase of a series of superposed large-scale eddies, which transport
heat poleward at a rate proportional to the square of their amplitudes;

° F| is a zonally symmetric thermal forcing on X;
F, is a zonally asymmetric thermal forcing on Y.

The two forcings F| and F; are the values to which X and Y would be driven if the
westerly current and the eddies were not coupled.

The discretization of these ODEs is a very delicate process, but the Runge—Kutta
fourth-order technique can be used for this purpose. Figure 6 shows the integration
of Eq. (33) from tp =0to T =ty + NAt, using a =0.25,b =4, F; =8, F, =1 and
At = 0.08. The initial state of the system at time ¢t =0 is taken as X(0) =1.31,
Y (0) = 1.48 and Z(0) = 0.34. Lorenz has shown that this system with these parameter
values exhibits chaotic behaviour.

(b) Discretization of the dynamical system

We are not interested in a perfect simulation of the Lorenz model; rather, we are
interested in a representation of this system in a form like

X(t + A1) X (1)
{Y(I+At)}:A{Y(I)} (34)
Z(t + A1) Z()

as a test of our analysis technique. By discretizing Eqs. (33) with the forward Euler step
(Runge—Kutta fourth-order technique), we obtain

Y(t + At) = At(=bX () Z(t) + Fa), +(1 — At + AtX ()Y (),
Z@t+ At = AtbXOY (@) + (1 + AtX (1) — ADZ(1), J

X+ AD=At(=Y®)* — Z®)*> +aF) + (1 —aAD)X (1), }
(35)

where At is the discrete time step. Discretization schemes other than the forward
Euler scheme can be used (improved Euler, Crank—Nicholson, backward Euler step,
etc.). Using a different finite-difference scheme would change the results we obtain by
introducing higher-order terms. This is normal since different simulation schemes result
in different systems, which result in different sensitivities/feedbacks. For our purpose,
we take Eqs. (35) to be the exact model.

The size of At needs to be sufficiently small so that the linearization of the system
during a single time step is accurate, i.e. so that the hypothesis that the Jacobians of
the system are constant during the time interval is true. The time discretization is also
directly related to the regularity of the Jacobians of the system: high complexity requires
small time steps to ensure a good description of the evolution of the Jacobians. We take
At =0.08 (when re-scaled, equivalent to two hours); this time step leads to a good
simulation of the Lorenz system.
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Figure 6. Time evolution of the state variables X, Y and Z of the Lorenz model, with parameters a = 0.25,
b=4, F| =8, F, =1and At =0.08, simulated by fourth-order Runge—Kutta. See text for explanation.
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(c) Sensitivities of the dynamical system
The Jacobian matrix of the discrete system is

X(t + At)
G { Y(t + At)}

Z(t + Ab)
AX(t+ A X+ A1) Xt + A1)
X (1) Y (1) AZ(1t)
AY(t+ At) Yt + Ar) Y (t + Ar) G6)
X (1) Y (1) AZ(1)
AZ(t+ A1) dZ(E+ A IZ( + AD)
X (1) Y (1) AZ(1)
1 —aAt YN 400 “2ALZ(t)
= <—At bZ(t) + AtY(t) 1— At + AtX (1) —bALX(t) ) (37)
At bY (1) + AtZ (1) At bX (1) 14+ AtX (1) — At

These Jacobians are dependent on the state of the system (in this sense, we say that the
sensitivities are nonlinear), so they are also dependent on time. Thus, the hypothesis of
constant Jacobians, as in classical feedback analysis, cannot be used to understand this
system. For our analysis we assume only that Jacobians are constant over a single time
step, but the elements in Eq. (36) still vary with time.

Local sensitivities are a linearization of the nonlinear dynamical system but we
estimate these sensitivities over the whole state space. We estimate the global sensi-
tivity G(-), which is state dependent. The sensitivity G(a;x1 + azx2) is not equal to
a1G(X1) 4+ a,G(X3), which means that the sensitivity operator G is nonlinear.

(d) Theoretical feedback analysis

The two external forcing, aF| on X and F, on Y, are continuous and constant in
Eq. (33). In the discrete formalization, this is represented by

AX(tg + kAt) = At aFy,

AY(tg + kAT = AtFs, } fork=1,...,N. (38)

If the beginning state of the simulation is chosen as (X (tg) = 0, Y (¢9) =0, Z(t9) = 0),
then the state of the system at the next time step is given by

X(ty + Ar) = At aFy,
Y(to + At) = AtF», 39
Z(tp + At) =0,

and, for the next time step,

X(tg + 2A1) = 2At aF) — 2A° F>* — At?a’Fy,
Y (ty + 2A1) = 2AtFy — At*Fy + 2At3aF) Fa, (40)
Z(fo + 2At) = At’abF\ F>

and so on. We analyse the impacts of the external forcings, a F; and F,, on the diagnosed
variable, chosen here to be X for illustration.
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The perturbation at time 7y + At, AX(fg + At) = At aFy, is straightforward. At
time 79 + 2At, without feedbacks, the forcing would simply be added:

AX(tg +2At) =2At aF). 41
With feedbacks, the true perturbation is given by

AX (tg + 2A1) = Ex (o + 2A1) + 90X (o +240) (to + A1)
0 =Lyt 39X (to + A1) x (o

X (to + 2 Ab)

(O—Ey(to+At)

aY (tg + Ar)
=2AtaF| — 2AP Fy? — At?a’Fy. (42)

Comparing Eqgs. (41) and (42), we note the presence of two correction factors giving the
contribution of the ‘direct’ feedback processes: these feedbacks are caused only by the
integration of the variables over time and the fact that the effects change with time. This
expression for the perturbation is in agreement with the first part of Eq. (40).

For the description of the other (‘indirect’) feedbacks, three time steps are required.
At time 9 + 3At, the integration of the external forcings is even more complex:

AX (9 + 3At) = external forcing + direct feedbacks

4
-+ indirect feedbacks 1 + indirect feedbacks 2, “3)
where
external forcing = Ex (fp + 3At),
. 0X (o +3Ar1) 0X (o +3Ar1)
direct feedbacks = ——————— E x (g + 2At ———— FEy(tg + 2A0),
irect feedbacks = o Ay Ex o+ 280 4 o oA Fr (o 240

0X (to + 3At) 0X (g + 2At)
0X (to + 2At) 0X (g + At)

0X (to + 3At) Y (g + 2At)
oY (tg + 2At) 0X(tg + At)
0X (to + 3At) 0Z(tg + 2At)
0Z(tg + 2At) X (tg + At)

0X (tg +3At) X (9 + 2A1)
0X (tg +2At) Y (ty + At)

0X (tg + 3A1) 0Y (fg + 2At)
aY (tg + 2At) Y (9 + At)
0X (tg +3At) 0Z(ty + 2At1)
0Z(ty + 2At) Y (ty + At)
We note in this expression some terms that do not appear in the classical analysis
formalism. For example, the direct feedbacks terms (due to time integration of the
variables) are suppressed in the classical analysis. Furthermore, we see that in this
expression both forcings (on variable X and on variable Y') are taken into account, which
is not possible in the classical approach.

Integrating the system for one more time step would be highly complex, this is the
reason why analysis of this kind of dynamical system is a difficult problem. To perform

indirect feedbacks 1 = {

} Ex(to + A1),

indirect feedbacks 2 = {

} Ey(to + At).
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prediction, the model needs to represent the sensitivities with a high degree of precision.
Otherwise, an error at one time step is rapidly amplified in the next time steps.

The classical formalism for the feedback analysis is not well adapted to the analysis
of the Lorenz model since there is no preferred variable on which the other two variables
of the model depend solely. So we already see in this simple example how limited the
assumptions used in the classical feedback analysis formalism are and how such an
analysis could be very misleading. Again, it is clear that evaluation of the sensitivities
is more straightforward than evaluation of feedback factors, which are products of
sensitivities. However, for illustrative purposes we will use the classical formalism to
calculate feedback factors just because they are more familiar. If we choose the variable
Y as the variable affected by the external forcing and X as the diagnosed variable, the
gain of the system Ey — AX is given by (see Eq. (23))

G
AX=——Ey=GE 44
—cn’Y rEy (44)
G E 45)
=——~— v Evr
I_Z[f[XY

where

° G = 0X/9Y is the gain without feedbacks of the system Ey — AX;
e H=) .(0Y/3X;)(3X,;/3X).

The three feedback factors for this mono-variable system are defined as

dX dY
YX
=— 4
X Ty ax (46)
X Y 3Y
P = s (47)
dY 3Y 9X
X Y 9Z
r = (48)

2T Y aZax’
Note that the sensitivities used in this relation still are dependent on time (and have to
be estimated precisely), so that the feedback factors are also time dependent. As we will
show, this fundamental property of complex, nonlinear dynamical systems reduces the
value of the classical (linear) feedback analysis for understanding the system behaviour.
Note again that the above quantities are not the true feedback factors for the Lorenz
model since they are defined using invalid assumptions. In particular, the cause-and-
effect structure of variable relationships are not as simple as described in the classical
parallel feedback scheme (see section 2(d)).

5. EXPERIMENTAL RESULTS

(a) Construction of the dataset

The quality of the dataset used to evaluate the sensitivities is a crucial issue. For
example, using data from a system in equilibrium or from a system during a transient
change may not give the same results in the analysis. Ideally, a good dataset would
be one including all ranges of variability for all combinations of the variables of the
system. The more situations that are included in the dataset, the larger will be the range
of validity of the sensitivity estimates. This situation parallels that in climate analysis
where the range of validity is limited by the range of climate states actually observed.
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The discrete dynamical version of the Lorenz model stabilizes more rapidly onto a
limit cycle than the continuous version. So, to create a dataset closer to the behaviour
of the continuous system, we chose randomly 200 noisy states from the Runge—Kutta
integration of the continuous Lorenz model. These 200 states of the system are used
as initial states for 200 trajectories of 1000 time steps each from the discrete system
in Eq. (35). The final dataset is then composed of N = 200 000 couples {(I¥, O%); k =
1,..., N}, where

I = (X (1o + kAN, Y (19 + kA1), Z(tg + kAD)
is an N x 3 matrix of the inputs of the system and

OF = (X (1t + (k + 1)A1), Y (tg + (k + 1) A1), Z(tg + (k + 1) A1)

is an N x 3 matrix of the outputs. Each couple is linked by OF = A(I¥).

The parameters for the Lorenz model are the same as previously: a = 0.25, b =4,
Fi =8, F,=1 and At =0.08, but we have introduced Gaussian-distributed noise
N (0, 0.001) at each time step and in each variable during the simulation in order to
be closer to an experiment with observation errors. Figure 7 shows the resulting noisy
trajectories included in the dataset.

(b) Linear and nonlinear regressions

If a priori information is available to define good predictors, the dynamical system
can be described as a linear model. In the Lorenz case, the good predictors, P(¢), of
the general model Eqgs. (1) can be determined directly from the equations of the model
Eqgs. (35):

P(1) = (X (1), Y(O), Z(1), Y*(1), Z*(1), XY (), X(DZ(®), Fi, F2). (49
In this configuration, the dynamical system of Eq. (35) becomes

X (t + At)
{Y(r + At)} =AX(t), Y(1), Z(t), Y?(1), Z*(t), X()Y (1), X () Z(1), Fy, F>),
Z(t + Ar)

(50)
where the constant matrix A is given by
1 —aAt 0 0 —At At 0 0 aAt 0
A= < 0 1 — At 0 0 0 —At —bAr O At). 1
0 0 1-At O 0 bAr At 0 O

A linear regression in this case would give a good estimate of the elements of matrix
A. This is a very general idea: all nonlinear dynamical systems could be simplified, and
even linearized, if all of the good predictors (all the terms in the equations) are known.

In practice, this a priori information is not available, so choosing good variables to
predict system behaviouris a key question that has no general answer. Usually, then, the
predictors are chosen as the state variables; model Eqgs. (1) becomes

X(t 4+ Ap) X()
{Y(z+At)}:A{Y(r)}. (52)
Z(t + A1) Z(1)

Now, a linear regression analysis approximates the nonlinear function # by a linear
model: #4 is replaced in Eq. (52) by a 3 x 3 matrix A. This matrix is estimated by
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Figure 7. Noisy trajectories of the dataset from the discrete Lorenz dynamical system: X, Y and Z are the state
variables of the system.
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minimizing the least-squares criterion: if the square of errors criterion C is imposed so
that dC/9A;; = 0, we obtain the linear expression I"IA =170, which gives

A=d1"n '170. (53)

The use of this linear regression is already an improvement compared to classical
approaches because it allows the simultaneous estimation of multivariate sensitivities.

For a nonlinear regression, we use an MLP network with one hidden layer. The
architecture has three units in the input layer coding I = (X (¢), Y (¢), Z(¢)), 30 units in
the hidden layer (this number was chosen by trial in the learning phase) and three units
in the output layer coding the prediction,

O=X@+ A1), Y(t + A1), Z(t + At)).

The total number of parameters is 3 x 30 + 30 x 3 = 180.

For the training of the NN (i.e. estimation of the parameters for the nonlinear re-
gression), we have used 150 000 time-pairs randomly chosen from the dataset previously
constructed and for the test data (i.e. to measure the ability of the model to generalize to
unknown data), we have taken the remaining 50 000 points.

The quality of the training dataset is essential in an NN experiment. The dataset
used should contain many samples of all the different states that occur. It is difficult
to quantify the number of samples required to efficiently train the NN (no theoretical
results being available for that); only an empirical experiment with various trials could
answer to this question. In our Lorenz model experiment, the 150000 samples dataset
is sufficiently rich to represent all the situations. The selection of the number of hidden
nodes is based on achieving a minimum fit error: significantly fewer or more nodes than
30 increases the fit error.

In Figure 8, the theoretical function 4 generated by integrating the nonlinear
equations forward using the 4th Runge—Kutta scheme, and its two estimates (by linear
and NN regressions) are illustrated. For display purposes, each plot presents one of
the variables at time t + At, as a function of a variable at time ¢, supposing that the
two other variables are equal to their mean values. It is clear that the NN regression
is very precise (differences with the theoretical function are undetectable) and useful
for representing nonlinear behaviour (X (¢ + At) as a function of Y (¢), for example),
where the linear regression is very poor. This figure shows how important the nonlinear
aspectis: even the multivariate linear regression is not sufficient. The errors of the linear
regression are nearly as large as the variability of the quantities, whereas the errors of
the NN fit are usually about one to two orders of magnitude smaller than the variability
of the quantities (except for the one sensitivity that is constant).

A dilemma that we will face in applying this technique to a real case, numerical
model or observations of the climate, is that we do not know the true answer as we do
here for the Lorenz model. Hence, we must develop practical ways to assess the fidelity
of the analysis results. One possibility is to conduct ‘prediction’ experiments where
we pick many specific and different episodes in the observed record (preferably time
periods notincluded in the original analysis), initialize the NN at the beginning state, and
calculate forward for a short time interval. The goal of such experiments is diagnostic,
to test quantitatively whether the derived sensitivities used in the NN can reproduce the
observed system dynamics in cases not included in the original analysis. We are not
proposing that an NN be used for climate forecasts (i.e. be used as a statistical forecast
model) in place of a physical model of the climate (see Yuval 2000) for a previous study
on this subject). Rather, we are interested in whether the derived sensitivities can be
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used to understand the physical processes. At least, the sensitivities of a model can be
compared with sensitivities inferred from observations.

We have tested this idea by making prediction runs with our NN representation of
the Lorenz model: the calculation proceeds by calculating the state of the system at time
step t + At, from the state and sensitivities of the system at time ¢; the sensitivities are
then calculated at time ¢ + Az, and used in the next cycle. Figure 9 shows the evolution
of the r.m.s. error of the predictions based on the linear and our nonlinear statistical
models against the actual model started at the same state. As in section 4(b), each time
step is 0.08 units, about 2 h in the scaling of the equations (i.e. 0.08 of the one day unit of
the original Lorenz model). As expected, the nonlinear regression by the NN does much
better than the linear regression, but the fact that the Lorenz system is chaotic (with
the particular parameter values used) results in a relatively rapid increase of prediction
error, even with a more accurate approximation of the system dynamics. Nonetheless,
the nonlinear analysis extends the period of useful prediction accuracy by at least a
factor of three. Figure 10 illustrates the time records from the prediction model and the
actual model.

(c¢) Analysis of sensitivities

We illustrate the retrieval of the variable sensitivities in the form of histograms
of their values as a function of X(¢). Similar figures (not shown) are obtained as
functions of Y (¢) or Z(¢). The standard deviation of the theoretical sensitivities of the
system (i.e. the linear sensitivities that come from the Jacobian of the system equations)
are shown in Fig. 11, indicating that the all sensitivities of the system, except for
0X(t + Ar)/0X (t), are not constant. In this figure, the y-axis represents the standard
deviation of the sensitivities and these quantities are represented for different states of
the system (the sensitivities being dependent on the system) characterized by different
states of the X (¢) variable. Since the system is not uniformly frequently in each X (¢)
state, the number of points used to compute the standard deviation of the sensitivity is
different for each X (¢) range. But our standard-deviation estimates are robust since the
number of data values used is quite large (200000 points). Note that the y-axes are all
different since the standard-deviation ranges are different for the different sensitivities.

The classical approach for the estimation of sensitivities takes the finite differences
of two variables between two (usually equilibrium) states of the system or two extreme
events. For example, for the estimation of AX/AY, two sets of extreme events of the
variable Y could be selected in the observations and the averages of the state differences
(AX) and (AY) estimated. Then, the following approximation would be used:

Y - (AX) 54

aX(I)_(AY)' (54)
We see how this approach can go wrong because it is so dependent on the selection of
data: at best, it gives a crude estimate of the mean sensitivity for the selected dataset of
extremes, which usually becomes worse as the time interval grows larger. The results of
this approach for the Lorenz model would be very poor.

The particular sensitivity 0X (t + At)/0X(¢) is the only one that is constant, i.e.
does not depend on the state of the system: in Eq. (37), 0 X (z + At)/9X () =1 — aAt
(the values in Fig. 11 are not perfectly equal to zero due to numerical imprecision). The
linear regression, for this particular sensitivity, is then a good estimate. So the results are
good in this particular case, but for the eight other sensitivities, the results of the linear
regression are insufficient. In a real-world case, we would not know which results are
correct, if any.
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TABLE 1. STATISTICS ON TRUE AND RETRIEVED SENSITIVITIES

Sensitivity Statistics Theoretical ~ Linear ~ Neural Network
X (t+ Ar)/oX(t) Mean 0.980 0.973 0.981
Standard deviation 0.000 0.000 0.003
R.m.s. error 0.007 0.003
dX(t + Ar)/dY(t) Mean —0.077 —0.025 —-0.076
Standard deviation 0.133 0.000 0.132
R.m.s. error 0.144 0.004
X (t+ At)/0Z(t) Mean —0.057 —0.064 —0.057
Standard deviation 0.146 0.000 0.145
R.m.s. error 0.147 0.004
Y (t + At)/0X(t) Mean —0.077 0.014 —-0.077
Standard deviation 0.297 0.000 0.297
R.m.s. error 0.310 0.003
Y (t + At)/aY (¢) Mean 0.955 0.979 0.956
Standard deviation 0.048 0.000 0.048
R.m.s. error 0.054 0.003
Y (t + At)/dZ(t) Mean —0.141 —0.133 —0.141
Standard deviation 0.192 0.000 0.193
R.m.s. error 0.193 0.003
dZ(t + At)/0X(t) Mean 0.184 0.259 0.184
Standard deviation 0.281 0.000 0.281
R.m.s. error 0.291 0.004
dZ(t + At)/dY(t)  Mean 0.141 0.226 0.142
Standard deviation 0.192 0.000 0.192
R.m.s. error 0.210 0.003
dZ(t + At)/0Z(t)  Mean 0.955 0.962 0.955
Standard deviation 0.048 0.000 0.048
R.m.s. error 0.049 0.003

Figure 12 represents the r.m.s. error in sensitivity with respect to the theoretical
sensitivities for the neural network and linear estimates. The NN-based estimates of
the sensitivities are a considerable improvement in comparison to the linear-regression-
based ones (except for the constant sensitivity 0X (z + At)/9dX (¢) at extreme values of
X (2), but the differences are still negligible). Note that the magnitudes of the sensitivities
are very different, yet our technique seems to be able to handle this situation. Further-
more, these results are good if we compare the r.m.s. errors with the natural variability
described in Fig. 11. These results are summarized in Table 1. Since linear-regression-
based sensitivities are constant by assumption, the r.m.s. errors of this representation are
essentially equal to the standard deviations of the sensitivities. The improvement of the
NN-based sensitivities is considerable with respect to the linear regression: standard-
deviation errors are always (except for the constant sensitivity) smaller than the natural
standard deviation of the theoretical sensitivities by one and sometimes two orders of
magnitude. Given the large range of the sensitivity magnitudes, it is notable that the
r.m.s. errors of the NN are uniformly distributed over the nine sensitivities, even if the
variability of the sensitivities is quite different. Table 1 summarizes the improvement
gained by use of the NN Jacobians to estimate the instantaneous, multivariate and non-
linear sensitivities of the discrete Lorenz dynamical system.

Figure 13 shows an example of the evolution in time of the theoretical and NN
estimates of sensitivities. This figure also highlights the more complex situation when
feedback processes intersect: when the state of the system reaches some extreme value,
the sensitivities change, even in their sign, taking the system back towards a middle
range of values and finally stabilize the system on its attractor.
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Figure 14. Discrete Lorenz model (continuous line) and discrete Lorenz model minus the sensitivity
dX (t + Ar)/9dZ(t) (dashed), where X, Y and Z are the state variables.
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Feedback factors F,, F, and F, (see Egs. (46)—(48)): evolution through time using theoretical,

linear-regression and neural-network sensitivities—the theoretical and neural-network feedback factors cannot
be distinguished.
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For example, using the theoretical sensitivities in Eq. (37), we can analyse the
relation between the variables X and Y. If Y is large and positive, then the sensitiv-
ity 0X(t + At)/0Y (t) = —2AtY (t) becomes large and negative. So, if ¥ continues
to increase, the variable X will decrease even more rapidly. But the auto-sensitivity
aY (t + At)/0Y (¢) (the most important sensitivity for the variable Y) is equal to
1 — At + At X (¢), which will be less than 1 (damping effect) when X is less than 1.

One consequence of this behaviour is that particular sensitivities, even when they
are small on average, can still have a strong impact on the behaviour of the system.
A linear regression analysis assuming that the sensitivities are constant in time, may
provide some estimate of mean sensitivities from a dataset. For example, the sensitivity
0X(t + At)/0Z(t) is, on average, nearly zero. A linear analysis, in this case, might
suggest neglecting this relationship in understanding the system. Figure 14 shows how
wrong this approximation would be: this figure represents the discrete Lorenz model
defined in Eq. (35) with and without this particular sensitivity set to zero. The two
trajectories have quite distinct behaviour: the simulation without the variable sensitivity
oscillates more strongly and with a different time-scale. The behaviour of the complete
system is produced by oscillations of the particular sensitivity, depending on the state
of the system, between a positive and a negative value, thereby stabilizing the system
dynamics.

The sensitivities have a general tendency to exhibit similar shapes in their time
records (Fig. 13), which means that they are closely linked with each other (i.e. for
example, when one is high another is low). This type of nonlinear behaviour prevents a
linear, even multivariate, regression analysis from extracting even approximate informa-
tion about the system dynamics. Understanding of the system seems to require a more
accurate representation of the time evolution of the multivariate sensitivities.

(d) Feedback analysis

We have seen that the classical approach for the feedback analysis, which makes
strong (and incorrect) hypotheses about the dynamical system, is not well adapted to the
Lorenz model. However, the feedback factors can still be computed for the theoretical
function, the linear regression model and the NN model according to Eq. (46)—(48). We
suppose here that these expressions are applicable to show that these feedback factors
evolve in time (Fig. 15), in violation of one of the assumptions used to obtain the
expressions. The feedback factors Eqs. (46)—(48) are not simple and do not improve
our understanding of the system since their physical interpretation is confused because
they are products of the (simpler) sensitivities. The sensitivities themselves seem to be
the more fundamental quantities. Furthermore, as we showed in section 2, without all
the assumptions of this formalism (linearity, constant sensitivities, hierarchical cause-
and-effect relationships, constant forcing, static equilibrium state, etc.), the whole
formulation in terms of feedback factors falls apart.

6. CONCLUDING REMARKS

What we have learned with this study of the Lorenz model is that the feedback
processes are dependent on some important particular properties of the dynamical
system under study. First, the feedback processes appear in a dynamical system when
multivariate sensitivities are integrated over time. Second, if the system is nonlinear
(i.e. the dynamical operator in Eq. (1) is nonlinear), the sensitivities are state-dependent
and therefore not constant with time, which means that the feedback processes evolve
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in time. Third, each feedback has a strong impact on the character and behaviour of the
dynamical system, even those that may have a small time-averaged magnitude can have
a stabilizing effect that changes drastically the characteristics of the system. Without
such feedbacks the dynamical system would have more tendency to destabilize when an
external forcing is introduced. The feedback processes can have a stabilization effect,
so the system does not diverge too much from its initial equilibrium. But this new
(statistical) equilibrium state could be different, with for example a higher frequency
of extreme events. This is a theory that has been discussed recently by Palmer (1999).

We have shown that the classical technique (from the electrical circuit theory) to
analyse feedbacks is, by its hypotheses, very limited in its validity when applied to
highly nonlinear, multivariate systems like the climate. Furthermore, the results of this
kind of classical analysis are no more than a ‘schematic’ measure of feedback processes
at system equilibrium, which may be very misleading.

In comparison, the multivariate, instantaneous and nonlinear sensitivity concept is
more generally applicable without these constraints and appears to be a good way of
understanding the behaviour of a system with coupled feedback processes. This general
technique allows the quantification of these processes both spatially and temporally.
This dynamical information seems to be more useful than the classical feedback factor
which provides only one number per variable. Furthermore, if a priori information about
the cause-and-effect physical relationships is available (like in a reduced-form model),
it is possible to introduce this additional knowledge into the NN model.

It is very important to note again that our goal in this work is not to perform sta-
tistical prediction of climate. Our analysis of local sensitivities tends to show that the
statistical prediction of the climate based on too simple assumptions, in particular the
linearity of the response to forcing, is not useful. Our goal is to improve numerical mod-
els of climate by understanding the processes better, then use the improved numerical
models to do the climate predictions.

The dataset used in our analysis technique needs to satisfy some statistical require-
ments. First, the space and time sampling needs to be adequate to the description of the
space and time variability of the sensitivities that originate the feedbacks, so that the
assumption that the sensitivities are constant over one time step or one space interval
is an accurate approximation. Using too coarse time sampling is equivalent to using
time-averaged data, which mixes many physical processes and ruins the sensitivity es-
timates. Using space-averaged data is also dangerous; for example, a mean sensitivity
equal to zero could be generated by two opposite regimes with non-zero sensitivity.
In other words, even if we are studying the longer-term behaviour of the system, we
must resolve the dynamics appropriately or the nonlinear integration will be incorrect.
Some averaging is unavoidable, however, as processes occur on a range of spatial and
temporal scales. The analysis ignores, due to limited data/model resolution, smaller
scales making the assumption that they are not important in the feedback processes
considered. A study of the space/time (state) variability of the sensitivities is then a
prerequisite for the definition of the dataset sampling needed for the feedback analysis.
Second, the dataset has to have good space and time coverage in order to provide many
samples of as many climatological situations as possible. In other words, the dataset
should contain ‘all possible’ combinations of the state variables. The more situations in
the dataset, the better will be the ‘laws’ inferred by the analysis. These comments also
mean that the dynamics of the system cannot be correctly deduced from datasets where
individual quantities have been separately averaged over space and time because such
treatment would alter the dynamical relationships. These points are a major argument
to use detailed (e.g. hourly or daily), long-term datasets instead of generating new ones,
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limited in time. Fortunately, the size of observational and model data available in climate
studies is now becoming large enough to support such an NN training.

Some additional technical aspects need further investigation. In particular, the
question of how to handle high-dimension data needs to be addressed. There are
different possible approaches to reduce the dimension of data in order to apply this
technique to climate data from observations or GCMs. First, if we are interested in a
short time-scale (i.e. for local processes), it may be possible to perform the analysis on
a limited number of locations. If the time-scales considered are larger, then they involve
larger-scale spatial information. In that case, a way to reduce the dimension of these
large-scale data would be to use an EOF or ICA (Aires et al. 2000, 2002a) procedures,
it is possible to estimate our sensitivities on the principal components themselves.
Another way to deal with large-scale structures is to use indices (like El Nifio Southern
Oscillation, Quasi-Biennial Oscillation, North Atlantic Oscillation, etc.) as proxies for
climate processes.

Our technique has the advantage of being applicable to numerical-model output
as well as observations, which means that the important work of inter-comparison of
models with each other and models to data could be carried out in a more meaningful
way, by comparing the sensitivities of the variables of the system and their state
dependence. This diagnostic usage is particularly interesting because it concerns very
intuitive and physical quantities. Comparisons of the sensitivity relationships could also
be made with field experiment data to understand how physical processes produce these
sensitivities. Thus, our analysis approach provides a framework for a whole new attack
on these problems.

The statistical model estimating the sensitivities can also be used to study the
change of the system to a new equilibrium state, including the time to reach equilibrium
after a small perturbation. This simplified model could also be used to analyse the
propagation of uncertainties when predictions are performed. In other words, the NN
statistical model provides a better approximation of ‘small perturbation’ behaviour than
attempts to linearize the system by dropping relationships or averaging in space and
time. The next step for these ideas is to use this new technique for more complicated
climate systems involving real observations or numerical model outputs.
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